MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC KAZAKHSTAN

KARAGANDA UNIVERSITY NAMED AFTER ACADEMICIAN E.A.BUKETOV

EDUCATIONAL PROGRAM on the direction of preparation «7M015- Training of teachers in natural science subjects»

Level: Master-degree

Karaganda, 2022

The educational program in the direction of preparation "7M015-Chemistry" is developed on the basis of:

- The Law of the Republic of Kazakhstan dated July 27, 2007 No. 319-III "On Education"

- The Law of the Republic of Kazakhstan dated July 11, 1997 No. 151-I. "On languages in the Republic of Kazakhstan"

- The state compulsory standard of postgraduate education dated August 31, 2018 No. 604

- National Qualifications Framework of March 16, 2016 by the Republican Tripartite Commission for Social Partnership and the Regulation of Social and Labor Relations.

- Order of the Ministry of Education and Science of the Republic of Kazakhstan "On approval of the Rules for the organization of the educational process on credit technology" dated October 2, 2018 No. 152

- Classifier of training areas with higher and postgraduate education from October 13, 2018. No. 569.

- The state compulsory standard of primary education. Approved by Resolution of the Government of the Republic of Kazakhstan dated August 23, 2012 No. 1080. Resolution of the Government of the Republic of Kazakhstan dated August 15, 2017 No. 484.

- Professional standard "Teacher" (Appendix to the order of the Chairman of the Board of the National Chamber of Entrepreneurs of the Republic of Kazakhstan "Atameken" dated June 8, 2017 No. 133)

Content

N⁰	The passport of the educational program	Страницы
1	Code and name of the educational program	4
2	Code and classification of the field of education, area of education	4
3	Group of educational programs	4
4	Volume of the credits	4
5	Education form	4
6	Language of education	4
7	Academic degree	4
8	EP type	4
9	Level on ISCE	4
10	Level on NQF	4
11	Level on SQF	4
12	EP distinctive features	4
	University partner (JEP):	4
	University partner (DDEP):	4
13	Appendix to the state license to class educational activities	4
14	The name of the accreditation body and the validity period of the accreditation EP	4
15	The purpose of the educational program	4
16	Qualification characteristics of the graduate	4
a)	List of graduate positions of the graduate	4
б)	Scope and objects of professional activity of the graduate	4
в)	Types of professional activity of the graduate	4
г)	Functions of the graduate's professional activity	5
17	Formulation of learning outcomes based on competencies	5
18	Determination of modules of disciplines in accordance with the results of training	6
19	Matrix of achievability of educational outcomes	8
20	Coordination of the planned educational outcomes with the methods of teaching and evaluation within the module	14
21	Criteria for assessing the achievability of learning outcomes	15
22	The graduate model	17

1. Code and name of the educational program: «7M01504-Chemistry»

2. Code and classification of the field of education, area of education: 7M01 Pedagogical sciences, 7M015 Preparation teachers in sciences subjects

3. Group of educational programs: «M013 Teacher training in chemistry»

4. Volume of the credits: 120

5. Education form: full time

6. Language of education: russian

7. Academic degree: Master of Education in the educational program «7M01504-Chemistry»

8. EP type: Acting EP

9. Level on ISCE: 7

10. Level on NQF: 7

11. Level on SQF: 7

12. EP distinctive features:

University partner (JEP):

University partner (DDEP):

13. Appendix to the state license to class educational activities: KZ83LAA00018495 No.016 from 28.07.2020

14. The name of the accreditation body and the validity period of the accreditation EP: IAQAE. 29.05.2017-27.06.2022 years.

15. The purpose of the educational program: Preparation of a qualified chemistry teacher with knowledge of the English language, possessing fundamental and applied knowledge, research skills for the implementation of scientific, pedagogical and professional-practical activities.

16. Qualification characteristics of the graduate

a) List of graduate positions of the graduate. A graduate of a magistracy is awarded the degree "Master of Education" in the educational program "7M015-Chemistry". A graduate of the educational program "7M015-Chemistry" receives the following positions: "Teacher. University lecturer", researcher, "Teacher. College Teacher", "Teacher. High school teacher"

6) Scope and objects of professional activity of the graduate. The sphere of professional activity of graduates in the educational program "7M015-Chemistry" is: educational organizations, scientific institutions. The objects of professional activity of masters in the educational program "7M015-Chemistry" are: higher education institutions, scientific institutions, secondary schools, grammar schools, lyceums, colleges, regardless of ownership and departmental subordination.

в) Types of professional activity of the graduate:

- educational (pedagogical, educative);

- science-research;

- organizational and managerial ("subject-subject" interaction, management in education).

Γ) Functions of the graduate's professional activity:

- educational;

educating;

– research;

– socio-communicative.

Type of competencies	Learning outcomes Code	Outcomes
Behavioral skills and personal qualities: ((Soft skills)	LO1	Knows and understands the principles of democracy, justice, honesty, respect for the personality of the student, his rights and freedoms; substantiates the modern paradigm of higher education, its content; determines the driving forces and principles of the learning process in higher education.
	LO2	He understands the values of personality, language and communication, applies the skills of cooperation, the ability to resolve conflicts; reveals the features of modern didactic concepts in higher education; demonstrates knowledge in the field of modern educational technologies; Fluent in foreign languages at a level that allows for effective interaction in the professional and scientific environment.
Digital competencies: (Digital skills)	LO3	He knows the conceptual and theoretical foundations of chemistry and chemical tech- nology, its place in the general system of sciences and values, the history of develop- ment and the current state.
Professional competencies: ((Hard skills)	LO4	He owns a system of knowledge about fundamental chemical laws and theories, the chemical essence of phenomena and processes in nature and technology.
	LO5	He knows the structure of chemical-technological systems for the analysis of the inter- action of technologies and the environment.
	LO6	Able to optimize the basic technological schemes for producing modern materials.
	LO7	He knows the theoretical foundations of inorganic chemistry for mastering the meth- ods of synthesis of substances and materials.
	LO8	Able to analyze the structure, physico-mechanical and rheological properties of inor- ganic polymers for their practical application.
	LO9	Knows and knows how to analyze gases, liquids, films, ceramics, single crystals, na- noscale structures and composites.
	LO10	Able to explain the behavior of the properties of solvents, materials and composites based on theoretical knowledge of organic chemistry.

17. Formulation of learning outcomes based on competencies

Learning result Code	Name of module	Name of discipline	Volume (ECTS)
LO1, LO2	Philosophical and historical aspects of social	History and philosophy of science	4
LO1, LO2	and humanitarian knowledge	Higher school pedagogy	4
LO1, LO2		Psychology of management	4
LO1, LO2		Pedagogical practice	4
LO1, LO2	Professional Languages	Foreign language (professional)	4
LO1, LO2		Professional foreign terminology in chemistry	5
LO1, LO2		Theory and practice of translation in chemistry	
LO3, LO4	Basics of scientific research and commerciali-	Commercialization of the results of scientific and technical activities	5
LO3, LO4		Organization and planning of scientific research in the field of chemical sciences	
LO3, LO4		Innovation in Chemistry	5
LO3, LO4		Current issues in chemistry	
LO5, LO6	Methodology and modern technologies of teaching chemistry	Modern methodological foundations of teaching general and inorganic chemistry	4
LO5, LO6		Modern technologies of teaching chemistry in universities	4
LO5, LO6		Methodology natural-science research	4
L07, L08	Actual problems of modern chemistry	Chemistry of conjugated systems	4
L07, L08		Chemistry of acyclic and cyclic conjugated systems	
L07, L08		Chemistry of supramolecular compounds	4
L07, L08		Supramolecular chemistry	
L07, L08		Polycondensation (in English)	4
L07, L08		Modern direction of organic chemistry (in English)	
L07, L08	1	Research practice	12
LO9, LO10	Actual problems of physical chemistry and	Statistical thermodynamics (in English)	4
L09, L010	ecology	Computational methods in chemistry (in English)	

18. Determination of modules of disciplines in accordance with the results of training

LO9, LO10		Aspects of study environmental issues (in English)	4
LO9, LO10		The circulation of substances in the ecosystem and biosphere (in English)	
LO9, LO10		Chemistry of functional materials	5
LO9, LO10		Semiconductor materials chemistry	
	Science-research work	Science-research work of a student, including the internship and fulfill- ment of the master	24
	Final attestation	Formulation and defense of master	12

19. Matrix of achievability of educational outcomes

NN	Name of discipline	Brief description of the discipline	Quantity	The f	formed	educati	onal ou	itcomes	(codes)			
п/п			of credits	PO 1	PO 2	PO 3	PO 4	PO 5	9 O d	PO 7	PO 8	6 Od	PO 10
		Cycle of basic di	sciplines		1								
		University com	ponent										
D1	History and philosophy of science	History and philosophy of science as the study of the general patterns of scientific knowledge in its histor- ical development and changing socio-cultural con- text. Philosophy of science and methodology of sci- ence. Features of scientific knowledge. Historical development of institutional forms of scientific activ- ity. Scientific communities and their historical types. Training of scientific personnel. Changing the place and role of science in the life of society.	4	+	+								
D2	Higher school pedagogy	The subject and methodological foundations of ped- agogy. Development, education and socialization of the individual. Education system in the Republic of Kazakhstan. The essence of the pedagogical process at school, its laws and principles. Theory of educa- tion. Patterns and principles of education. Means, forms and methods of education. The team as a means of education. General concept of didactics and its main categories. Laws, patterns and principles of learning.	4	+	+								
D3	Psychology of management	Subject and object of management psychology. Psy- chology of the object and the object of control. Fun- damentals of management psychology. Control func- tions. Staff motivation and management efficiency. Classification of approaches to making managerial decisions in controlling. Business communication and management conflicts. Psychological features of activity on development of administrative decisions. Psychology of anti-crisis management.	4	+	+								
D4	Foreign language (professional)	Fluent in foreign languages at a level that allows you to effectively interact in a professional and scientific	4	+	+								

		environment; possesses skills that allow to carry out further education and development of a linguistic personality with a high degree of independence and self-regulation.								
		Cycle of basic di Component of	choice							
D5	Professional foreign ter- minology in chemistry	Chemical language as a goal and means of teaching in higher education. Symbolism and terminology of the chemical language. Nomenclature of the chemi- cal language. Methods of studying chemical termi- nology. Methods of working on chemical terms and names of foreign origin. Names of prefixes of Latin and Greek numerals in complex word formations. Foreign elements of terms and names encountered in the course of higher school chemistry. Dictionary of chemical terms.	5	+	+					
	Theory and practice of translation in chemistry	Among the numerous complex problems that mod- ern linguistics studies, an important place is occu- pied by the study of the linguistic aspects of interlin- gual speech activity, which is called "translation" or "translation activity".		+	+					
D6	Commercialization of the results of scientific and technical activities	Acquire basic knowledge in the field of project man- agement in relation to the specifics of the activities of small and medium-sized businesses in conditions of economic instability. Get practical skills in the formation and implementation of the company's stra- tegic goals using project management, the ability to analyze the quality of existing business processes in the company, etc.	5			+	+			
	Organization and plan- ning of scientific re- search in the field of chemical sciences	Stages of research work, the foundations of scientific knowledge and creativity, the accumulation and pro- cessing of scientific and technical information, the organization of work in scientific libraries and librar- ies of research institutes; processing of the obtained data using modern methods, modern experimental methods of research, presentation of the results of scientific work, writing a scientific article or a brief informational message.				+	+			
D7	Innovation in Chemistry	Subject, content and objectives of the discipline "In- novation in Chemistry". Basic terms and concepts of	5			+	+			

			chemical innovation. Innovative ideas in the field of								
			industrial waste disposal. Innovation in organic								
			chemistry. Innovation in the synthesis of inorganic								
			substances. Innovation in the production of mineral								
			fertilizers. Innovation in basic chemistry and petro-								
			chemistry. Innovative ideas in the production of								
			organic substances								
		Current issues in	The discipline is the basis for the study of a new			+	+				
		chemistry	approach to chemistry as a science capable of ensur-				'				
		enemisti y	ing the production and consumption of chemical								
			products in such a way as to reduce the maximum								
			damage to nature at all stages of the chemical pro								
			case from energy consumption to waste disposal								
			The course examines the main strategic directions of								
			modern chemistry								
┝			modern chemisury.								
			Cycle of profile d	isciplines							
			University com	iponent							
	D8	Modern methodological	The system of content and construction of higher	4				+	+		
		foundations of teaching	education (tasks, model of a specialist). System-								
		general and inorganic	structural approach in teaching general and inorganic								
		chemistry	chemistry. Principles of high school didactics. The								
			working curriculum is one of the methodological								
			developments in the taught disciplines. Methods of								
			research in the field of methods of chemistry. Lec-								
			tures, seminars and laboratory classes as the main								
			forms of organization of the educational process.								
			The system for monitoring student knowledge at the								
			university. Quality and evaluation of chemical								
			knowledge								
F	D9	Modern technologies of	Problems of higher chemical education Specificity	4				+	+		
	2,	teaching chemistry in	of modern methods in teaching chemistry. Active								
		universities	methods in teaching chemical disciplines. Problem								
		universities	learning CASE STUDY method. Methodology for								
			the formation of critical thinking design method								
			Associogram method. Criteria-based assessment of								
I			learning outcomes. New technologies for teaching								
I			chemistry at the university Modular learning tech								
			nology Forms of organization of the adjustional								
			process in the university. Credit technology as a								
I			form of organization of the advastional reasons								
1			1 Ionin of organization of the educational process	1	1		1	1	1	1	

D10	Methodology natural-	Natural scientific knowledge is the process of com-	4			+	+			
	science research	prehending the truth. Reliability of scientific								
		knowledge. Truth is the subject of knowledge.								
		Forms of natural science knowledge. Methods and								
		techniques of natural science research. The concept								
		of methodology and method. Scientific discovery								
		and proof. opening logic. Experiment is the basis of								
		natural science. Practical orientation of the experi-								
		ment. Modern means of natural science research.								
		Cycle of profile d	lisciplines							
		Component of	choice							
D11	Chemistry of conjugated	The concept of conjugation. Types of conjugated	4					+	+	
	systems	connections. Delocalized chemical bond. Bond								
	5	lengths and energies in conjugated compounds. Res-								
		onance energy of benzene. The concept of the reso-								
		nance integral. Types of Conjugated Connections:								
		π,π -Conjugated Connections, p, π -Conjugated Con-								
		nections, Cross-Conjugated Connections σ,π -								
		Conjugated Connections. Baker-Nathan effect. Res-								
		onance theory. resonant effect. Steric hindrance to								
		resonance. Aromaticity. The concept of induced ring								
		current.								
	Chemistry of acyclic and	Chemical bond in organic compounds. This type of	-					+	+	
	cyclic conjugated sys-	bond is formed when atoms interact, the electronega-								
	tems	tivity of which is equal or differ slightly. The struc-								
		ture and reaction mechanisms of conjugated com-								
		pounds, intermolecular and intramolecular interac-								
		tions that determine the chemical structure of mate-								
		rials based on conjugated compounds are consid-								
		ered; features of the physicochemical properties of								
		conjugated compounds.								
D12	Chemistry of	The concept of chemistry of supramolecular solid	4					+	+	·
	supramolecular	compounds. Ideas about chemical-information syn-								
	compounds	thesis, which makes it possible to create any supra-								
	Ĩ	molecular objects (both structured structural prod-								
		ucts, and electronic and optoelectronic devices, new								
		generation devices based on quantum size effects),								
		etc.								
	Supramolecular	Supramolecular chemistry is an interdisciplinary	1					+	+	
	chemistry	field of science that includes the chemical, physical,								

		and biological aspects of considering chemical sys- tems that are more complex than molecules and										
		linked into a single whole through intermolecular										
D13	Polycondensation (in	The discipline considers current trends in the devel	1						-	+		
D15	Finglish)	opment of the chemistry of stepwise polymerization	-						1	i.		
	Linghishi	processes studies their main patterns in order to										
		control macromolecular growth reactions that regu-										
		late the size and structure of the polymer chain Par-										
		ticular attention is paid to the study of the physico-										
		chemical and mechanical properties of new poly-										
		condensation polymers, thermosetting and thermo-										
		plastic materials based on them.										
	Modern direction of or-	This course will cover the mechanistic, theoretical							+	+		
	ganic chemistry (in Eng-	and synthetic aspects of a wide range of reactions										
	lish)	used in organic chemistry. Classical reactions as										
		well as recently developed reactions will be dis-										
		cussed with examples from the literature. Students										
		will define classes of organic compounds and typical										
		reactions, distinguish intermediate states of stability,										
		postulate reaction mechanisms, plan multi-step syn-										
		thesis, and analyze/interpret.										
D14	Statistical	For equilibrium systems, statistical thermodynamics	4								+	+
	thermodynamics (in	makes it possible to calculate thermodynamic poten-										
	English)	tials and write equations of state, phase states, and										
		chemical equilibrium. Non-equilibrium statistical										
		thermodynamics provides a substantiation of the										
		thermodynamic relations of irreversible processes										
		and makes it possible to calculate the kinetic coeffi-										
		cients in the transfer equations. Statistical thermody-										
		namics establishes a quantitative relationship be-										
		tween micro and macro properties of physical and										
		chemical systems.		-								
	Computational methods	Familiarization of students with the conceptual appa-									+	+
	in chemistry (in English)	ratus of the discipline, obtaining knowledge in the										
		neid of the theory of the structure of atoms and mol-										
		tions of chemical chicata										
D15	Aspects of study onvi	Feelogy basic concents and terminology Feelogy	Λ									
015	ronmental issues (in Eng	definitions. History of science. The subject of coole	4								+	+
1	romnemar issues (in Elig-	a deminuons. Thistory of science. The subject of ecolo-		1	1	I	1		1	1	1	

	lish)	gy. Scientific approaches to the problem of the rela- tionship between man and nature. The structure of modern ecology, its methods, tasks, connections with other sciences. Basic concepts of modern ecol- ogy. System laws of modern ecology. The main modern environmental problems. Environmental Safety. The nature of use. Basic concepts and terminology. The nature of use.							
	The circulation of sub- stances in the ecosystem and biosphere (in Eng- lish)	The biosphere is the shell of the Earth inhabited by living organisms, being under their influence and occupied by the products of their vital activity, the "film of life", the global ecosystem of the Earth. The biosphere is characterized by closed cycles of sub- stances, the source of energy for which is sunlight. Considers the cycles of some of the most important elements. An ecosystem is a set of living organisms (communities) and their habitats that form a sustain- able system of life.						+	+
D16	Chemistry of functional materials	A branch of chemistry that studies various aspects of solid-phase substances, in particular, their synthesis, structure, properties, applications, etc. Its objects of study are crystalline and amorphous, inorganic and organic substances.	5					+	+
	Semiconductor materials chemistry	The structure of the main types of organic semicon- ductors. Electronic structure of undoped organic semiconductors. Band structure of doped organic semiconductors. Vibrational degrees of freedom and phonons. Electrons, holes, polarons and solitons in organic semiconductors. Band transfer of electrons and holes in organic semiconductors. Hopping charge transfer in undoped and doped organic semiconductors.						+	+

Learning outcomes	Planned learning outcomes for the module	Teaching methods	Assessment methods
LO1	Knows and understands the principles of democracy, justice, honesty, respect for the personality of the student, his rights and freedoms; substantiates the modern paradigm of higher education, its content; determines the driving forces and principles of the learning process in higher education.	interactive lectures and seminars	Test, colloquium, preparation of speeches and writing of abstracts
LO2	He understands the values of personality, language and communication, applies the skills of cooperation, the ability to resolve conflicts; reveals the features of modern didactic concepts in higher education; demonstrates knowledge in the field of modern educational technologies; Fluent in foreign languages at a level that allows for effective interaction in the professional and scientific environment.	interactive lectures and seminars, pro- ject training	Project defense, test, colloquium, report
LO3	He knows the conceptual and theoretical foundations of chemistry and chemical technology, its place in the general system of sciences and values, the history of development and the current state.	Discussion, case methods, dispute	Presentations, essay writing
LO4	He owns a system of knowledge about fundamental chemi- cal laws and theories, the chemical essence of phenomena and processes in nature and technology.	Practical classes, seminars, training games	Test, program development, preparation of infor- mation on specific issues.
LO5	He knows the structure of chemical-technological systems for the analysis of the interaction of technologies and the environment.	Practical classes, seminars, trainings, project method	Test, program development, preparation of infor- mation on specific issues, presentations
LO6	Able to optimize the basic technological schemes for pro- ducing modern materials.	Interactive lectures, practical classes, seminars, training, project	Project protection, written work
LO7	He knows the theoretical foundations of inorganic chemistry for mastering the methods of synthesis of substances and materials.	Practical classes, seminars, trainings	Prepared tasks for distance learning
LO8	Able to analyze the structure, physico-mechanical and rheo- logical properties of inorganic polymers for their practical application.	interactive lectures, seminars, experi- mental workshops	Test, colloquium, laboratory journals
LO9	Knows and knows how to analyze gases, liquids, films, ce- ramics, single crystals, nanoscale structures and composites.	practical classes, seminars, trainings pedagogical practice	Development of training lessons, report on peda- gogical practice
LO10	Able to explain the behavior of the properties of solvents, materials and composites based on theoretical knowledge of organic chemistry.	practical classes, seminars, trainings pedagogical practice	Written work, development of evaluation criteria for specific topics of the school course in chemis- try and biology, tests

20. Coordination of the planned educational outcomes with the methods of teaching and evaluation within the module

21. Criteria for assessing the achievability of learning outcomes

Codes of LO	Criteria
LO1	Knows: the history of the development of human society in Kazakhstan, the dynamics of the development of national history (driving
	forces, mechanisms, trends, patterns of historical development), the general course of history (the structure of history, its dynamics),
	traditions and culture of the peoples of Kazakhstan
	Can: establish causal relationships in the history of Kazakhstan, comprehend historical events and phenomena based on comparative
	analysis, creatively apply historical knowledge in practice
	Owns: the skills to analyze historical events, develop forecasts of historical events, be tolerant of the traditions and culture of other
	peoples of the world.
LO2	Knows: the history of language development, the dynamics of the development of a foreign language, new trends and features of lan-
	guage development
	Can: analyze the stages and trends in the development of a modern foreign language
	Owns: all types of speech activity (writing, speaking, listening, reading), effective intercultural communication in a professional environment.
LO3	Knows: knows in the field of project management to the specifics of the activities of small and medium-sized businesses in conditions
	of economic instability
	Can: how to use tools and methods of project risk assessment, as well as the ability to counter risks
	Owns: the skills to form and implement the company's strategic goals using project management, the ability to analyze the quality of
	existing business processes in the company
LO4	Knows: the basics of inorganic chemistry and the chemistry of elements, is free to navigate in chemical synthesis and the study the
	properties of inorganic materials, have a correct picture of the world and acquire knowledge in various fields of natural science.
	Can: apply theoretical skills, skills in solving urgent problems of modern chemical science in professional activity, to find, extract, sys-
	tematize and apply the necessary information
	Owns: the skills to handle chemical equipment and conduct chemical experiments, knowledge of the place of inorganic chemistry in the
	system of other chemical sciences, about the main categories of chemistry
LO5	Knows: the main modern means of evaluating learning outcomes, methodological foundations of their application; basic methods of
	scientific research; modern educational model of teaching BL, including online; methods and techniques of conducting classes using
	elements of research work
	Can: effectively organize the educational process in BL format in English, including online; independently, determine the effectiveness
	and methodology of the use of learning outcomes assessment tools in structuring the educational process; apply research planning
	methods and data processing techniques
	Owns: the skills to apply methods of organizing work related to research and project activities of students, discussions and other
	problematic teaching methods; modern information and communication technologies in the educational process
LO6	Knows: phenomena, basic concepts, basic laws and their experimental and theoretical basis from various fields of chemistry
	Can: apply in research and professional activities the basic mathematical methods used for modelling and analysis of chemical process-
	es; achievements and problems of modern chemistry
	Owns: the skills to carry out scientific work and observations on chemical processes, use an apparatus for collecting experimental data
	and work using physico-chemical equipment.

LO7	Knows: phenomena, basic concepts, basic laws and their experimental and theoretical basis from various fields of chemistry		
	Can: apply in research and professional activities the basic mathematical methods used for modelling and analysis of chemical		
	processes; achievements and problems of modern chemistry		
	Owns: the ability to carry out scientific work and observations on chemical processes, use an apparatus for collecting experimental data		
	and work using physico-chemical equipment		
LO8	Knows: the basic concepts of statistical thermodynamics and its place in science; the basic laws (principles) of static thermodynamics;		
	the relationship of statistical physics with thermodynamics; the conditions of thermodynamic stability of the system		
	Can: the mathematical apparatus of static thermodynamics; analyze the behaviour of the simplest systems; use the studied methods in		
	fluctuation phenomena		
	Owns: the skills to master the mathematical apparatus of thermodynamics and statistical physics; the use of knowledge for the analysis		
	of the simplest systems		
LO9	Knows: the impact analysis of industrial facilities and environmental monitoring		
	Can: analyze the effects of industrial facilities and environmental monitoring		
	Owns: the skills to monitor the state of the environment		
LO10	Knows: suitable physical methods for solving practical problems		
	Can: analyze the results of theoretical and experimental solutions to practical problems and assess their reliability.		
	Owns: the skills to describe the results of experiments and their corresponding theories		

22. The graduate model of the educational program

Graduate Attributes:

- High professionalism in the field of education and chemistry
- Emotional intelligence
- Adaptability to global challenges
- Leadership
- Entrepreneurial thinking
- Global citizenship
- Understanding the importance of the principles and culture of academic integrity

Types of competencies	Description of competencies
 Behavioral skills and personal qualities: ((Soft skills) 	Knows the principles of democracy, justice, honesty; respect for the student's personality, his rights and freedoms; makes judgments and makes decisions to achieve specific goals; Understands the val- ues of personality, language and communication; cooperation skills, ability to resolve conflicts; is ready to be responsible for the results of his professional activity;
2. Digital competencies:(Digital skills)	Conducts classes using optimal means, forms, methods and techniques of education and training, as well as modern educational technologies, including ICT, stimulating interest in knowledge and cooperation, including e-learning
3. Professional competencies: ((Hard skills)	Knows the conceptual and theoretical foundations of chemistry, its place in the general system of sciences and values, the history of development and the current state; Owns a system of knowledge about fundamental chemical laws and theories, the chemical essence of phenomena and processes in nature and technology; Applies knowledge of theoretical and experimental foundations of chemistry and chemistry teaching technologies, owns methods of formation of subject skills and skills of students, knows the techniques of forming an interest in chemistry and using knowledge in the field of chemistry in everyday life; Possesses the skills of organizing and staging a chemical experiment (laboratory, demonstration, computer); Applies knowledge of general and theoretical chemistry, fundamental, applied mathematics and information technologies for the analysis and synthesis of phenomena and processes; Implements analytical and technological solutions in the field of experimental and theoretical chemistry; Owns a wide range of teaching strategies, teaching and behavior management of students, uses a suitable learning strategy for a specific person

Compiled by:

- Hoer C.ch.s., associate prof., head of department D.ch.s., professor of the department C.ch.s., professor of the department C.ch.s., associate professor of the department Master student of the 1st course of the EP "Chemical technology of inorganic substances"

Mukusheva G.K. Merhatuly N. Kokibasova G.T. Kezdikbaeva A.T. Pashaeva A.B.

Примечания.

protocol No. 8 Educational program reviewed to of faculty board by 25. 03 LOLL Educational program discussed at the meeting of the Academic Council by 28. 04. 2022 protocol No. 5 protocol No. 12 The educational program is considered and approved at a meeting of the University Board by 26.05. Loll T.Z.Zhussipbek Member of the Board - Vice-Rector for Academic Affairs

Director of the Academic Affairs Department Dean of the Faculty of Chemistry

G.S.Akybayeva M.Zh. Burkeev

16